Python 教程

Python 教程 Python 简介 Python 入门 Python 语法 Python 注释 Python 变量 Python 数据类型 Python 数值类型 Python 类型转换 Python 字符串 Python 布尔值 Python 运算符 Python 列表 Python 元组 Python 集合 Python 字典 Python If...Else Python While 循环 Python For 循环 Python 函数 Python Lambda Python 数组 Python 类和对象 Python 继承 Python 迭代 Python 作用域 Python 模块 Python 日期时间 Python 数学运算 Python JSON Python 正则表达式 Python PIP Python Try...Except Python 用户输入 Python 字符串格式化

Python 文件处理

Python 文件处理 Python 打开文件 Python 创建/写入文件 Python 删除文件

Python NumPy

NumPy 简介 NumPy 入门 NumPy 创建数组 NumPy 数组索引 NumPy 数组裁切 NumPy 数据类型 NumPy 副本 vs 视图 NumPy 数组形状 NumPy 数组重塑 NumPy 数组迭代 NumPy 数组连接 NumPy 数组拆分 NumPy 数组搜索 NumPy 数组排序 NumPy 数组过滤 NumPy 随机数 NumPy ufunc 通用函数

Python SciPy

SciPy 简介 SciPy 入门 SciPy 常量 SciPy 优化器 SciPy 稀疏数据 SciPy 图表 SciPy 空间数据 SciPy Matlab 数组 SciPy 插值 SciPy 统计显着性检验

Python 机器学习

Machine 机器学习入门 Machine 平均中位数模式 Machine 标准差 Machine 百分位数 Machine 数据分布 Machine 正态数据分布 Machine 散点图 Machine 线性回归 Machine 多项式回归 Machine 多元回归 Machine 缩放 Machine 训练/测试 Machine 决策树

Python MySQL

MySQL 入门 MySQL Create Database MySQL Create Table MySQL Insert MySQL Select MySQL Where MySQL Order By MySQL Delete MySQL Drop Table MySQL Update MySQL Limit MySQL Join

Python MongoDB

MongoDB 入门 MongoDB Create Database MongoDB Create Collection MongoDB Insert MongoDB Find MongoDB Query MongoDB Sort MongoDB Delete MongoDB Drop Collection MongoDB Update MongoDB Limit

Python 参考手册

Python 参考手册 Python 内置函数 Python 字符串方法 Python 列表/数组方法 Python 字典方法 Python 元组方法 Python 集合方法 Python 文件方法 Python 关键字 Python 内置异常 Python 词汇表

Python 模块参考

Python 随机模块 Python 请求模块 Python 统计模块 Python 数学模块 Python cMath模块

Python 如何使用

Python 删除列表重复项 Python 反转字符串 Python 添加两个数字

Python 实例

Python 实例 Python 编译器 Python 练习 Python 测验 NumPy 测验 SciPy 测验

NumPy 简介


NumPy

什么是 NumPy?

NumPy 是用于处理数组的 python 库。

它还拥有在线性代数、傅立叶变换和矩阵领域中工作的函数。

NumPy 由 Travis Oliphant 于 2005 年创建。它是一个开源项目,您可以自由使用它。

NumPy 指的是数值 Python(Numerical Python)。


为何使用 NumPy?

在 Python 中,我们有满足数组功能的列表,但是处理起来很慢。

NumPy 旨在提供一个比传统 Python 列表快 50 倍的数组对象。

NumPy 中的数组对象称为 ndarray,它提供了许多支持函数,使得利用 ndarray 非常容易。

数组在数据科学中非常常用,因为速度和资源非常重要。

数据科学: 计算机科学的一个分支,研究如何存储、使用和分析数据以从中获取信息。


为什么 NumPy 比列表快?

与列表不同,NumPy 数组存储在内存中的一个连续位置,因此进程可以非常有效地访问和操纵它们。

这种行为在计算机科学中称为引用的局部性。

这是 NumPy 比列表更快的主要原因。它还经过了优化,可与最新的 CPU 体系结构一同使用。


NumPy 用哪种语言编写?

NumPy 是一个 Python 库,部分用 Python 编写,但是大多数需要快速计算的部分都是用 C 或 C ++ 编写的。


NumPy 代码库在哪里?

NumPy 的源代码位于这个 github 资料库 https://github.com/numpy/numpy

github: 使许多人可以在同一代码库上工作。


相关链接